If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+x^2=366^2
We move all terms to the left:
10x^2+x^2-(366^2)=0
We add all the numbers together, and all the variables
11x^2-133956=0
a = 11; b = 0; c = -133956;
Δ = b2-4ac
Δ = 02-4·11·(-133956)
Δ = 5894064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5894064}=\sqrt{535824*11}=\sqrt{535824}*\sqrt{11}=732\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-732\sqrt{11}}{2*11}=\frac{0-732\sqrt{11}}{22} =-\frac{732\sqrt{11}}{22} =-\frac{366\sqrt{11}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+732\sqrt{11}}{2*11}=\frac{0+732\sqrt{11}}{22} =\frac{732\sqrt{11}}{22} =\frac{366\sqrt{11}}{11} $
| 16-x=0.6x | | 2(x+1)=192 | | (2.7^x)=7.2 | | 2.7^x=7.2 | | 2x^2+45x-33=0 | | 4(2x+5)+3=7 | | 2x2+3x-3=0 | | 16x^2+141=96x | | 3×+4y=-19 | | a2+2a+1=a+5 | | a2+2a-4=a | | A/e-3=11 | | 4(-2y-1)4y=20 | | 4(n+1)=18 | | 3x-0+6=0 | | 22=r+(-23) | | 21=2n+13 | | Z=2y-3× | | 9y-10=71 | | 23.4=-3x | | Y=2x(x-3)=-5 | | X2+11x+31=3 | | 2x+8=-3.5 | | 7x=9.1 | | 9x÷16=81 | | X-((8-4x)/4)+2=0 | | 3m-25=m-5 | | -3/5-x/4=5/3 | | 7m-58=-37 | | -(5a+9)+a=7 | | 30x+0=22x+80 | | (2y-4)+8y=16 |